Range in chill portions (CP) calculated from 1911 - 2012 | Location | Applethorpe
QLD | Batlow
NSW | Young
NSW | Donnybrook
WA | Lenswood
SA | Manjimup
WA | Huonville
TAS | Spreyton
TAS | Tatura
VIC | Yarra Valley
VIC | |--|--------------------|---------------|--------------|------------------|----------------|----------------|------------------|-----------------|---------------|---------------------| | Lower Limit
(10 th percentile) | 69 | 100 | 81 | 52 | 91 | 64 | 105 | 94 | 81 | 94 | | Upper Limit
(90 th percentile) | 85 | 111 | 93 | 71 | 106 | 84 | 117 | 114 | 94 | 109 | ## How to interpret these maps Winter chill was calculated for each year 1911 – 2012. To represent the spread in historical data, the 10th and 90th percentiles are shown to represent 'lower' and 'upper' limits, or the range of likely chill accumulation. The 10th percentile can be considered as the minimum amount of chill a location can reliably achieve 9 out of 10 years. The lower limit value should be used as a guide for tree selection. Varieties with chill requirements less than the lower limit will likely meet requirements at least 90% of the time. The 90th percentile can be considered as the upper most chill that a location will accumulated. This high value of chill is only expected in 1 out of 10 years. Varieties with chilling requirements at the upper limit would only be expected to meet their chilling requirements 10% of the time. ## How were these maps made? Winter chill was estimated across Australia using the Dynamic chill model (Fishman et al. 1987) which creates chill portions (CP). Chill was evaluated from 1 March – 31 August for 1911 – 2012 using gridded temperature data calculated using quality controlled Bureau of Meteorology weather stations (Jones et al. 2009). ## References Fishman S, Erez A, Couvillon GA (1987) The temperature dependence of dormancy breaking in plants—mathematical analysis of a two-step model involving a cooperative transition. J Theor Biol 124:473-483. Jones D, Wang W, Fawcett R (2009) Highquality spatial climate data-sets for Australia. Australian Meteorological and Oceanographic Journal 58:233-248. Crisp red in bloom (Photo courtesy Dr Rebecca Darbyshire, UoM)