

¹Tatura SmartFarm, Agriculture Victoria, Tatura, Victoria, Australia; ²Centre for Agricultural Innovation, The University of Melbourne, Australia; ³Green Atlas, Alexandria, New South Wales, Australia

Aims

- irrigation using a ground-based mobile platform.
- Develop and validate an alternative method to the reference theory for CWSI calculation.
- Determine the relationships of thermal indices with plant water status and irrigation levels. III.

Materials and methods

- Nectarine orchard (Tatura SmartFarm, 0.6 ha, 2222 trees / ha, Open Tatura V system.
- Four irrigation treatments (100, 40, 20 and 0 % ET_c).
- Ground-based platform: Green Atlas Cartographer + Infrared sensors EnviroTherm™ (Everest Interscience) to measure T_c .
- 15 scans in 2020-21 and 2021-22; scan time = 8-10 minutes.
- QGIS used to extract and join data point with experimental plot information.
- dT calculated using T_a from an onsite weather station.
- CWSI calculated using two T_{wet} and T_{drv} derivations in the CWSI equation
 - $CWSI = (T_c T_{wet}) / (T_{drv} T_{wet})$:
 - \Box CWSI-I: T_{wet} and T_{drv} calculated using the lower and upper dT bounds empirically obtained by plotting the relationship between dT and VPD. \Box CWSI-II: T_{wet} and T_{drv} calculated using the 99% prediction intervals of the relationship between T_{c} and VPD.
- Ψ_{leaf} measured with a pressure chamber (ICT Intl, Armidale, Australia) as an indicator of plant water status.

Figure 1 Ground-based platform (Green Atlas Cartographer) equipped with Enviro-ThermTM infrared sensors (Everest Interscience).

Acknowledgements

A ground-based mobile platform to measure and map canopy thermal indices in a nectarine orchard

Alessio Scalisi¹, Mark O'Connell^{1,2}, Des Whitfield¹, James Underwood³, Ian Goodwin^{1,2}

Measure canopy temperature (T_c) and estimate canopy dT and CWSI in a nectarine orchard subjected to deficit

temperature map in

spring 2020–21.

- A linear relationship was observed between thermal indices and Ψ_{leaf} (Figure 4).
- Thermal indices were negatively correlated (p < 0.05) with irrigation levels in 10 out of 15 measurement times (Table 1).
- < 10 minutes i.e., constant T_a and VPD.
- Measurements from 715 to 1315 (AEDT) h showed no consistently significant evidence of T_c responses to irrigation.
- Significant differences were always observed in measurements between 1330 and 1915 (Table 1).

<u>Table 1</u> Correlation coefficients (Pearson's r) between thermal indices and irrigation levels (n = 24 per date).

Date	30/11/20	2/12/20	12/01/21	12/01/21	12/01/21	18/02/21	16/11/21	14/12/21	14/12/21	14/12/21	14/12/21	14/12/21	28/12/21	31/01/22	25/02/22
Гіте (AEDT, h)	1130	1415	1000	1300	1600	1115	1300	715	1015	1315	1615	1915	1400	1330	945
Ta (°C)	23.8	20.6	25.8	30.1	31.2	24.9	14.2	18.1	25.7	32.4	34.7	33.3	26.9	30.6	20.7
VPD (kPa)	1.7	1.7	1.7	2.6	3.1	1.9	0.8	0.5	1.7	3.6	4.5	4.1	2.4	2.2	0.9
Sig. level	*	*	*	*	**	***	n.s.	n.s.	n.s.	n.s.	***	*	***	*	n.s.
Pearson's r	-0.469	-0.458	-0.416	-0.503	-0.530	-0.702	-0.301	-0.236	-0.267	-0.117	-0.649	-0.443	-0.784	-0.602	-0.408
				01 ***					715 1015 L						

< 0.001. Grey cells show measurements at 715–1515 n; orange

Conclusions and perspectives

- Ground-based T_c mapping carried out in short time (\leq 10 minutes) described spatial variability of plant water status.
- CWSI can be calculated with an alternative method (CWSI-II) that relies on Big Data and statistical inferences.
- dT, CWSI-I or CWSI-II can be used to detect temporal variations of plant water status.
- Afternoon scans provided the most reliable detection of canopy temperature responses to deficit irrigation.

• T_c, dT, CWSI-I and CWSI-II had equal correlation coefficients with irrigation levels since measurements were collected in