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12 Abstract

13 BACKGROUND: Soluble solids concentration (SSC), dry matter concentration (DMC) 

14 and flesh firmness (FF) are important fruit quality parameters in stone fruits. This study 

15 investigated the ability of a commercial Vis/NIR spectrometer to determine SSC, DMC 

16 and FF in nectarine, peach, apricot and Japanese plum cultivars at harvest. The work 

17 was conducted in summer 2019/20 on fourteen stone fruit cultivars at Tatura, Australia. 

18 Two sub-samples of 100 fruit each were collected before and after commercial maturity 

19 (± 5 days) in order to maximise sample variability. 

20 RESULTS: Partial least square regression (PLS) models based on the 2nd derivative of 

21 the absorbance in the 729–975 nm spectral region proved accurate for the prediction of 

22 SSC and DMC (R2
CV > 0.750). Only the model generated for SSC in 'Golden May' apricot 

23 was less precise compared to other cultivars. No Vis/NIR models were accurate enough 

24 to predict FF in the cultivars under study (R2
CV < 0.750). 
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25 CONCLUSION: This study demonstrated that the Vis/NIR spectrometer was a reliable 

26 tool to monitor SSC and DMC in stone fruits at harvest but proved less useful for FF 

27 estimation. These results highlight the potential of Vis/NIR spectrometry to evaluate 

28 stone fruit quality both in situ pre-harvest and in the laboratory after harvest.

29

30 Keywords: apricot; fruit quality; near-infrared; nectarine; peach; plum

31

32 1. Introduction

33 Portable, rapid, non-destructive devices for the determination of objective fruit quality 

34 parameters offer improvements over traditional destructive and labour-expensive approaches 

35 to guide harvesting and marketing operations and supply chain logistics. Quality parameters 

36 provide insightful information on the ripening stage of specific fruit crops, and based on the 

37 traditional reference maturity indices, technology can be adapted for the estimation of fruit 

38 maturity. For temperate tree fruits, traditionally, sugars, dry matter, flesh firmness, starch, 

39 acidity, colour, size and shape, ethylene production and respiration rate have provided common 

40 indicators of maturity. Each fruit and/or cultivar has key maturity indices based on its genetic, 

41 morphological and physiological characteristics, or a combination. In stone fruit, several 

42 maturation indices can be used to determine the best harvest time. Maximising sugars, 

43 specifically soluble solids concentration (SSC), is a strategy of some fruit growers to improve 

44 quality and to determine harvest time. Flesh firmness (FF) is commonly used in apricot, 

45 nectarine, peach and plum as an indicator of ripeness.1 However, a high degree of variability 

46 in SSC and FF is found among different cultivars2, 3 making them not universal parameters for 

47 stone fruit maturity assessment, if used alone. Dry matter concentration (DMC) has been 

48 efficiently used to determine maturity in crops that accumulate oil in their fruit such as 
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49 avocado4 and olive,5 and more recently for quality determination in mango,6 kiwifruit,7 apple8 

50 and cherry.9

51 Besides being used as maturity indices, SSC, FF and DMC can be determined prior to 

52 harvest as quality parameters to anticipate the marketability of the produce and to improve 

53 harvest logistics. Typical SSC, FF and DMC determination requires sample destruction and 

54 can be expensive as specific equipment and labour are required. Therefore, a non-destructive 

55 device that can accurately predict multiple fruit quality parameters is highly sought after by 

56 industry. Visible/Near Infrared (Vis/NIR) spectrometry is one of the most established non-

57 destructive technology for the prediction of several quality and maturity indicators in temperate 

58 fruit crops and has been successfully used in apple,10,11 stone fruits,12,13,14,15 pear16,17 and several 

59 other crops. Many commercial in-line grader systems come fully equipped with near infrared 

60 spectrometers that quickly assess quality parameters after harvest18, but there is a need to assess 

61 the usefulness of Vis/NIR spectrometers for field and laboratory monitoring of stone fruit 

62 quality indices. Golic and Walsh validated the suitability of NIR spectroscopy in commercial 

63 graders to estimate SSC in stone fruits.19 A range of handheld NIR devices is currently 

64 commercially available and their performance for the estimation of fruit DMC was compared 

65 by Kaur et al.20. Donis-González et al. compared two portable devices for the estimation of 

66 SSC and DMC in peach, finding an overall better ability to predict the latter, and a reduced 

67 estimation power for the former.21

68 With the goal of improving harvest logistics and labour efficiency, this study aimed to 

69 investigate the suitability of a portable Vis/NIR spectrometer as a smart tool for the estimation 

70 of SSC, DMC and FF in nectarine, peach, apricot and Japanese plum cultivars at harvest.

71

72 MATERIALS AND METHODS

73 Experimental site and cultivar characteristics
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74 The experiment was carried out in the summer of 2019/20 in a stone fruit orchard at the 

75 Tatura SmartFarm, Agriculture Victoria, Australia (36°26'7'' S and 145°16'8'' E, 113 m a.s.l.). 

76 The stone fruit orchard (3.0 ha) at the farm comprises agronomic experiments on apricot, 

77 nectarine, peach and plum. A total of fourteen cultivars, i.e. one apricot (Prunus armeniaca L., 

78 'Golden May'), one Japanese plum (P. salicina L., 'Angeleno'), four nectarine (P. persica L. 

79 Batsch, 'August Bright', 'Autumn Bright', 'Rose Bright' and 'September Bright'), four yellow 

80 peach (P. persica L. Batsch, 'August Flame', late 'O'Henry', 'Redhaven' and 'September Sun') 

81 and four white peach (P. persica L. Batsch, 'Ice Princess', 'Snow Fall', 'Snow Flame 23' and 

82 'Snow Flame 25') were selected for this study. The harvest time of all the cultivars stretched 

83 from December 2019 to April 2020, with the first to reach commercial maturity being the 

84 apricot 'Golden May' (i.e. early December), and the last being the white peach 'Snow Fall' (i.e. 

85 start of April). The orchard was planted in 2013–2015, the soil had a clay loam soil texture and 

86 trees were irrigated, fertigated, thinned, pest/disease-managed and pruned based on 

87 commercial practices.

88

89 Fruit sampling and preparation

90 Fruit from each cultivar were collected at two different times, one slightly before (1st batch) 

91 and one slightly after commercial harvest (2nd batch), within a window of ten days. Each batch 

92 of fruit included specimens with diverse size and colour.  This sample collection method was 

93 applied to target fruit at different maturity stages and increase sample variability. Commercial 

94 harvest time was assessed by a DA-meter (TR Turoni, Forlì, Italy) based on the index of 

95 absorbance difference (IAD) thresholds provided by the HIN (Victorian Horticulture Industry 

96 Network).22 The only exception occurred for 'Redhaven', of which the two batches of fruit were 

97 harvested after commercial harvest because the DA-meter was temporarily unavailable. Each 

98 batch of fruit consisted of 100 fruit, leading to a total sample size of 200 fruit for each of the 
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99 fourteen cultivars collected over a total of 28 days of measurements between December 2019 

100 and April 2020.

101 Fruit were harvested in the early morning from different canopy sides and heights (i.e. to 

102 pool together fruit that received different amounts of sunlight), immediately brought to the 

103 laboratory, numbered and weighed, and then left on the laboratory bench for two hours in order 

104 to adjust to a standard temperature of 25 °C prior to measurement.

105

106 Vis/NIR spectrometry

107 In this study we used a commercial portable F-750 Produce Quality Meter (Felix 

108 Instruments, Camas, WA, USA) for Vis/NIR spectra collections in the 310–1100 nm range 

109 with a resolution of 3 nm. This device is equipped with a Carl Zeiss MMC-1 spectrometer, a 

110 xenon tungsten lamp as light source and a glass coated lens as per manufacturer specifications.

111 A circular area (≈ Ø 30 mm) was marked on a single side of each fruit and scanned using 

112 the F-750 meter. Each batch of 100 fruit was scanned within one hour after samples had reached 

113 25 °C in the same morning after fruit collection. The device recorded the absorbance spectra 

114 and their second derivatives, which were subsequently smoothed using a Savitzky and Golay 

115 10-point convolution. Data were stored in an SD card and downloaded prior to data analysis.

116

117 Reference destructive determinations

118 Once spectra were collected, the fruit were immediately destructed for SSC, DMC and FF 

119 determination. Fruit skin was peeled off from the area previously scanned with the F-750 meter, 

120 and flesh was exposed to a penetrometer (FT327, FACCHINI srl, Alfonsine, Italy) equipped 

121 with an 8 mm tip to measure FF on a scale from 0 to 15 kgf. Afterwards, a few drops of juice 

122 were extracted with the help of a pointy tool and SSC was measured using a digital 

123 refractometer (PR-1; ATAGO CO., LTD, Saitama, Japan) and expressed as °Brix. After SSC 
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124 determination, a cylindrical core (Ø ≈ 30 mm, h ≈ 15 mm) of the pulp — where previous 

125 measurements were taken — was extracted using a fruit corer and weighed on a digital scale 

126 with four decimal places. Fresh mass was instantly recorded, cores were placed in silicone trays 

127 and dried in an oven at 55 °C until constant weight was obtained (≈ 72–96 h). Afterwards, 

128 samples were weighed to determine dry mass and DMC (%) was calculated as dry mass / fresh 

129 mass × 100.

130

131 Data analysis and prediction models

132 Fruit fresh weight (FW), SSC, FF and DMC were represented using boxplots to determine 

133 average values and sample variability for each cultivar. Collected Vis/NIR spectra were 

134 analysed with a partial least square regression (PLS) procedure using Minitab® Statistical 

135 Software (Minitab, LL v.19, PA, USA). The absorbance spectra between 729 and 975 nm and 

136 their second derivatives were tested and compared in terms of robustness of the prediction 

137 models for SSC, DMC and FF. The region between 729 and 975 nm was chosen as it has 

138 previously been linked to sugars, carbohydrate and water absorbance.9,10,17 For comparison 

139 purposes, secondary FF models were built using the 500–1000 nm spectral region, in 

140 accordance with the wavelengths used by Uwadaira et al. for FF estimation in peach.23 The 

141 PLS procedure used the nonlinear iterative partial least squares (NIPALS) algorithm and 

142 consisted of three steps. First, a train-sample composed of 170 fruit per cultivar (minus 

143 measurement errors and/or outliers in the sample) was used to generate the prediction model. 

144 A second step was carried out by performing a leave-one-out (LOO) cross-validation (CV) on 

145 the same sample. The third and last step consisted of testing model robustness on 30 additional 

146 fruit per cultivar (test-sample). Half of the 30 test-sample fruit originated from the 1st batch and 

147 the other half from the 2nd batch of harvested fruit. Model robustness was determined based on 

148 the number of principal components (PCs), the coefficient of determination of the model (R2) 
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149 and the root mean square error (RMSE) calculated as the standard deviation of the residuals 

150 and expressed with the same units of each variable (i.e. °Brix for SSC, % for DMC and kgf for 

151 FF). The R2 and RMSE were calculated for the prediction model and for the CV (R2
CV and 

152 RMSECV, respectively) using from 1 to 10 PCs. In short, preferable models had fewer PCs, high 

153 R2 and low RMSE. The best models for each cultivar were selected by looking at the lowest 

154 number of PCs used for R2
CV and RMSECV to reach values near their maximum and minimum, 

155 respectively. Once models were selected, the second step consisted of validating them on the 

156 test-sample and expressing their accuracy by comparing the test R2 (R2
test) to the R2

CV. A large 

157 difference between the two coefficients indicated low predictive ability for an external sample. 

158 Although frequently used in PLS model comparison, the ratio of performance to deviation (i.e. 

159 RPD or residual prediction deviation) was not considered as a measure of goodness of fit in 

160 this study, as it is redundant with the use of R2
CV, 24 and less known in the scientific community, 

161 making it difficult to be correctly interpreted.

162

163 RESULTS AND DISCUSSION

164 Fruit characteristics

165 Boxplots in Fig. 1 show variability and sample characteristics of FW, SSC, FF and DMC 

166 for each cultivar under study. FW provided an indication of fruit size. 'Golden May' apricot 

167 and 'Angeleno' plum trees yielded the smallest fruit and had uniform size, with means ± 

168 standard deviations equal to 46.26 ± 13.10 g and 67.33 ± 12.02 g, respectively, whereas 

169 'September Sun' and 'Snow Fall' produced the largest fruit (192.94 ± 54.18 g and 174.41 ± 

170 57.09 g, respectively), but also had less homogenous FW (Fig. 1A). On the one hand, 

171 'Angeleno' plums had the highest SSC with very low variability among fruits (19.69 ± 1.35 

172 °Brix). On the other hand, 'Golden May' apricots expressed a very large SSC variability (Fig. 

173 1B). 'Redhaven' peach had the lowest FF (2.34 ± 1.52 kgf), followed by 'Angeleno' plum (2.97 
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174 ± 0.50 kgf), with the former being affected by the late sample collection (Fig. 1C). Overall, FF 

175 was characterised by high intra-cultivar variability, except for 'Angeleno' plums that showed a 

176 very narrow distribution. DMC had low intra- and inter-cultivar variability, with only 

177 'Angeleno' plums expressing a distinctively high mean DMC of 19.44 ± 1.36 % (Fig. 1D). 

178

179 Model analysis and prediction ability

180 Outliers observed in the distribution analysis (Fig. 1) and erroneous device measurements 

181 (i.e. showing false spectra responses) were removed from the samples before building the PLS 

182 models. A graphical example of the methodology used for model selection is presented for the 

183 estimation of SSC in late 'O’Henry' (Fig. 2). Both the models that used Vis/NIR absorbance 

184 (Fig. 2A and C) and its 2nd derivative (Fig. 2B and D) yielded very high R2 and R2
CV with very 

185 small RMSE and RMSECV. However, the latter needed a lower number of PCs than the former. 

186 In the case of SSC in 'O’Henry', the most accurate model was built using 4 PCs that summarised 

187 the 2nd derivative of the absorbance in the 729–975 nm wavelength. The proximity of model 

188 and cross-validation lines in Fig. 2 indicated that the cross-validation efficiently reproduced 

189 the prediction model and kept a small prediction error (RMSE).

190 In line with what was observed for the prediction of SSC in 'O’Henry', when the absorbance 

191 and its 2nd derivative were compared for all the parameters (SSC, DMC and FF) and in all the 

192 cultivars under study, they both yielded very similar models, with the exception that the latter 

193 always needed less PCs to build  the optimal models (3–5) when compared to the former (5–

194 10). 

195 In addition, FF models were similar for both the 729–975 and 500–1000 nm regions in terms 

196 of R2, R2
CV, RMSE and RMSECV (data not shown). Therefore, only models based on the 2nd 

197 derivative of the 729–975 nm absorbance were considered for the following results on SSC, 

198 DMC and FF.
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199 Model and cross-validation fits for SSC, DMC and FF were plotted against the actual 

200 responses to graphically assess model linearity (Fig. 3, 4 and 5) and data dispersion. In the case 

201 of SSC, model fits responded linearly to actual values and the points were tightly distributed 

202 around the y = x regression line, except for 'Golden May', whose fits were uniformly scattered 

203 farther away (Fig. 3) from the line. This was likely to be due to the high variability of SSC 

204 values highlighted in Fig. 1B. Similar results were obtained for DMC (Fig. 4), although in this 

205 case, model fits in 'Golden May' had a tighter linearity with actual responses than for SSC, as 

206 foreseeable from the lower variability of DMC observed in Fig. 1D. FF responses of model fits 

207 to actual responses were rather erratic (Fig. 5), with high point dispersion in all the cultivars, 

208 suggesting that the absorbance in the 729–975 nm spectra poorly predicts FF in stone fruit. 

209 Cross-validation fits showed almost identical responses to actual responses (Fig. 3, 4 and 5), in 

210 line with the model fits, thus, providing a promising indication of model robustness.

211 To confirm model linearity and assumptions from observations in Figs. 3–5, RMSE, 

212 RMSECV, R2 and R2
CV were analysed (Table 1). For all the cultivars, RMSECV was always higher 

213 than RMSE, as expected, but the difference between the two errors was very small for all the 

214 observed parameters (< 0.13 °Brix for SSC, < 0.10 % for DMC and < 0.13 kgf for FF). 

215 Similarly, R2 was expectedly higher than R2
CV but the delta between them was negligible (< 

216 0.04 for SSC and DM and < 0.09 for FF). However, assuming a threshold of R2
CV = 0.75 — 

217 equivalent to RPD = 2, a common threshold of goodness of fit 24 — prediction efficiency was 

218 consistently high for SSC and DMC models, but always low for FF models (Table 1). The only 

219 exception occurred for SSC prediction in 'Golden May' apricot, whose model generated a lower 

220 prediction ability (R2
CV = 0.688), as foreseen from the preliminary observations in Fig. 3. 

221 Overall, the best prediction models for SSC were obtained for 'August Bright' nectarine and 

222 'August Flame' peach, whereas the most accurate DMC estimation was found in 'September 

223 Sun' and 'Ice Princess' peaches (Table 1). The SSC and DMC models with lowest R2
CV were 
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224 found in 'Golden May' apricot, followed by 'Redhaven' peach. The low R2
CV found in 

225 'Redhaven' might have been influenced by late fruit sampling that led to slightly overripened 

226 fruit. As mentioned above, none of the models robustly predicted actual FF responses, 

227 regardless of sample variability. Indeed, the two lowest R2
CV were found in 'Angeleno' plum 

228 and in 'Ice Princess' peach (Table 1), which had very different sample variabilities (Fig. 1C).

229 Model validation on the further test-sample (i.e. 30 fruit) corroborated model robustness for 

230 SSC and DMC in all the cultivars (Table 1). Indeed, R2
test was always very similar to R2

CV 

231 (Table 1), with the highest delta (0.134) obtained in the DMC model for 'Ice Princess' peach. 

232 In the case of FF, given that R2
CV was always low, it was not needed to further test the model 

233 on the test-sample, as there was enough evidence of poor robustness. However, R2
test of FF 

234 models are reported in Table 1 for completeness.

235 A first preliminary analysis could lead to associating poor Vis/NIR prediction ability to high 

236 sample variability. Nevertheless, models built on accurate readings would benefit from high 

237 sample variability if spectra were truly related to specific variables (i.e. sugars, water, etc.). 

238 Indeed, very poor prediction ability was obtained for FF in 'Angeleno' plums (R2 and R2
CV < 

239 0.30), probably due to highly homogenous FF, in line with previous findings on the same 

240 cultivar,25 suggesting that there is likely a physiological explanation that justifies the lack of 

241 accuracy for FF prediction. The strong association between NIR spectra and SSC and DMC 

242 found in peach is not in line with the findings of Donis-González et al., who observed poor 

243 SSC prediction.21 This was likely to be due to different sample characteristics (e.g. size and 

244 cultivars) and post-harvest handling (i.e. fruit stored at 0 °C after harvest in Donis-González et 

245 al. 21) as very low temperatures might significantly alter SSC and FF.26 Other studies have 

246 successfully predicted SSC and DMC using Vis/NIR wavelengths like the one used in this 

247 work (i.e. 729–975 nm).9,10,17 The spectral region between 880 and 970 nm was particularly 

248 useful for DMC estimation in pear 27 since it contains the absorbance bands of starch, cellulose, 
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249 sucrose and water. FF is influenced by cell wall degradation, which is in turn regulated by 

250 organic acids, pectins and water content.23 Fruit may also soften due to the indirect effect of 

251 external impacts (wind, sunburn, insects, birds and pathogens) that trigger internal biochemical 

252 changes. This multitude of factors affect FF in a combined way, though not unique, meaning 

253 that, for example, while one fruit might mainly soften up due to cell water content changes, the 

254 FF of a second fruit might be lower because of a sudden pest or pathogen occurrence, and a 

255 third because of high light exposure and sunburn. Therefore, it is particularly hard to estimate 

256 FF using a predefined combination of the absorbance at different wavelengths. The fact that 

257 Udawaira et al. obtained a more robust model to predict FF in the peach 'Akatsuki' 23 was 

258 probably due to the different sample characteristics, as they used a lower amount of fruit and 

259 they progressively ripened fruit post-harvest. Indeed, there might be a significant increase of 

260 FF prediction ability in overripening peach, as indicated by the highest R2
CV observed in 

261 'Redhaven' (Table 1), the only cultivar that was harvested later than commercial maturity. 

262 Nonetheless, post-harvest experiments on the same cultivars should be conducted to verify this 

263 assumption.

264 The models built for all the cultivars proved robust for the estimation of SSC and DMC, 

265 even in the case of the late harvested 'Redhaven', indicating that these two parameters can be 

266 estimated with Vis/NIR spectrometers before and after ‘commercial harvest’ with a high degree 

267 of confidence. However, the R2cv of SSC and DMC in 'Redhaven' was lower than other 

268 peaches, suggesting that an optimal prediction of these two parameters becomes more difficult 

269 as fruit reach and exceed physiological maturity. The prediction of SSC in 'Golden May' apricot 

270 was not as accurate as for the other stone fruit and further studies on other apricot cultivars 

271 need to be conducted to determine if this strictly depends on genotype characteristics and sugar 

272 variability among fruits. 

273
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274 CONCLUSIONS

275 Overall, we demonstrated that Vis/NIR can be a reliable tool to monitor SSC and DMC in 

276 stone fruits at harvest. This study showed that the 2nd derivative of the absorbance in the 729–

277 975 nm spectral region generated robust models for SSC and DMC. The influence of 

278 temperature on Vis/NIR spectra is well known, thus the models in this study are suitable for 

279 measurements carried out at temperatures close to the one used in this study (25 °C). However, 

280 Vis/NIR spectrometry appears to be not accurate enough for FF determinations in stone fruits 

281 and the use of a more direct physical non-destructive method would be advisable (e.g. impact, 

282 acoustic or vibration sensors). Based on findings in this study, the Felix F-750 portable device 

283 offers the potential for the industry to routinely and rapidly take non-destructive field 

284 measurements of SSC and DMC in apricots, Japanese plum, peach and nectarine to improve 

285 harvest timing, determine destination markets and match consumers’ expectations.

286
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384 Figure legends

385

386 Figure 1. Fruit weight (FW, A), soluble solids concentration (SSC, B), flesh firmness (FF, C) 

387 and dry matter concentration (DMC, D) in fourteen stone fruit cultivars at harvest 

388 time (± 5 days). Boxplots display interquartile range boxes (1st to 3rd quartile), with 

389 horizontal median lines, highest and lowest observations (whiskers) and outliers 

390 (dots). Cultivar name abbreviations: 'Golden May' (GM), 'Angeleno' (AN), 'August 

391 Bright' (AGB), 'Autumn Bright' (ATB), 'Rose Bright' (RB), 'September Bright' (SB), 

392 'Ice Princess' (IP), 'Snow Fall' (SF), 'Snow Flame 23' (FL23), 'Snow Flame 25' 

393 (FL25), 'August Flame' (AF), 'O’Henry' (OH), 'Redhaven' (RH) and 'September Sun' 

394 (SS).

395

396 Figure 2. Coefficients of determination (R2) and root mean square errors (RMSE) of partial 

397 least square regression models for the prediction of soluble solids concentration 

398 (SSC) with 1–10 principal components in the peach 'O’Henry'. Model and cross-

399 validation R2 and RMSE reported for the 729–975 nm absorbance (A and C) and for 

400 its second derivative (B and D). Grey dashed vertical lines show the number of 

401 principal components selected for SSC prediction.

402

403 Figure 3. Scatter plots of model and cross-validation (CV) prediction fits against actual 

404 responses of soluble solids concentration (SSC). Dashed lines represent reference 

405 linear fits where SSC prediction = SSC actual response. Cultivar name 

406 abbreviations: 'Golden May' (GM), 'Angeleno' (AN), 'August Bright' (AGB), 

407 'Autumn Bright' (ATB), 'Rose Bright' (RB), 'September Bright' (SB), 'Ice Princess' 
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408 (IP), 'Snow Fall' (SF), 'Snow Flame 23' (FL23), 'Snow Flame 25' (FL25), 'August 

409 Flame' (AF), 'O’Henry' (OH), 'Redhaven' (RH) and 'September Sun' (SS).

410

411

412 Figure 4. Scatter plots of model and cross-validation (CV) prediction fits against actual 

413 responses of dry matter concentration (DMC). Dashed lines represent reference 

414 linear fits where DMC prediction = DMC actual response. Cultivar name 

415 abbreviations: 'Golden May' (GM), 'Angeleno' (AN), 'August Bright' (AGB), 

416 'Autumn Bright' (ATB), 'Rose Bright' (RB), 'September Bright' (SB), 'Ice Princess' 

417 (IP), 'Snow Fall' (SF), 'Snow Flame 23' (FL23), 'Snow Flame 25' (FL25), 'August 

418 Flame' (AF), 'O’Henry' (OH), 'Redhaven' (RH) and 'September Sun' (SS).

419

420 Figure 5. Scatter plots of model and cross-validation (CV) prediction fits against actual 

421 responses of flesh firmness (FF). Dashed lines represent reference linear fits where 

422 FF prediction = FF actual response. Cultivar name abbreviations: 'Golden May' 

423 (GM), 'Angeleno' (AN), 'August Bright' (AGB), 'Autumn Bright' (ATB), 'Rose 

424 Bright' (RB), 'September Bright' (SB), 'Ice Princess' (IP), 'Snow Fall' (SF), 'Snow 

425 Flame 23' (FL23), 'Snow Flame 25' (FL25), 'August Flame' (AF), 'O’Henry' (OH), 

426 'Redhaven' (RH) and 'September Sun' (SS).

Page 18 of 25

JSFA@wiley.com

Journal of the Science of Food and Agriculture

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1 Table 1. Partial least square regression model statistics for the prediction of soluble solids 

2 concentration (SSC), dry matter concentration (DMC) and flesh firmness (FF) using the 2nd 

3 derivative of the 729–975 nm absorbance.

Crop Cultivar Variable PCs† RMSEy RMSECV
x R2w R2

CV
v R2

test
u ntrain

t ntest
s

SSC 5 1.861 1.983 0.725 0.688 0.759 165 30

DMC 5 1.074 1.168 0.793 0.756 0.811 165 30

A
pr

ic
ot Golden 

May
FF 5 1.272 1.379 0.581 0.508 0.438 165 30

SSC 3 0.361 0.377 0.928 0.922 0.931 162 30

DMC 3 0.479 0.498 0.877 0.867 0.881 162 30

Pl
um Angeleno

FF 3 0.442 0.459 0.225 0.163 0.336 162 30

SSC 5 0.541 0.575 0.955 0.949 0.933 166 30

DMC 5 0.665 0.700 0.915 0.906 0.928 166 30
August 

Bright
FF 5 1.416 1.537 0.529 0.445 0.423 166 30

SSC 4 0.557 0.589 0.880 0.865 0.938 169 30

DMC 4 0.546 0.577 0.887 0.874 0.932 168 30
Autumn 

Bright
FF 4 1.020 1.079 0.467 0.402 0.496 169 30

SSC 5 0.574 0.614 0.939 0.930 0.919 166 30

DMC 5 0.602 0.650 0.914 0.900 0.954 166 30
Rose 

Bright
FF 5 1.327 1.399 0.499 0.443 0.000 166 30

SSC 4 0.650 0.692 0.903 0.890 0.919 163 30

DMC 4 0.647 0.695 0.914 0.901 0.945 163 30

N
ec

ta
rin

e

September 

Bright
FF 4 0.989 1.032 0.449 0.399 0.177 162 30

SSC 3 0.715 0.755 0.918 0.909 0.922 164 30

DMC 3 0.640 0.683 0.930 0.920 0.786 164 30
Ice 

Princess
FF 3 1.262 1.332 0.300 0.220 0.254 164 30

SSC 4 0.638 0.686 0.894 0.877 0.796 162 30

DMC 4 0.712 0.767 0.876 0.856 0.844 162 30Snow Fall

FF 4 1.286 1.368 0.449 0.377 0.039 162 30

W
hi

te
 p

ea
ch

Snow SSC 5 0.761 0.812 0.892 0.877 0.865 160 30
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DMC 5 0.683 0.734 0.900 0.884 0.862 160 30Flame 23

FF 5 0.908 0.971 0.567 0.505 0.580 160 30

SSC 5 0.587 0.627 0.877 0.860 0.820 166 30

DMC 5 0.502 0.542 0.891 0.872 0.824 166 30
Snow 

Flame 25
FF 5 0.940 0.991 0.625 0.583 0.656 165 30

SSC 4 0.532 0.571 0.943 0.935 0.845 162 30

DMC 4 0.598 0.643 0.909 0.895 0.864 163 30
August 

Flame
FF 4 1.287 1.363 0.459 0.393 0.488 161 30

SSC 4 0.524 0.566 0.942 0.932 0.951 161 30

DMC 4 0.650 0.693 0.889 0.873 0.945 161 30OHenry

FF 4 1.234 1.299 0.652 0.614 0.328 161 30

SSC 4 0.570 0.606 0.790 0.762 0.754 167 30

DMC 4 0.568 0.601 0.805 0.782 0.820 167 30Redhaven

FF 4 0.795 0.848 0.715 0.676 0.629 167 30

SSC 5 0.637 0.683 0.913 0.900 0.945 162 30

DMC 5 0.513 0.558 0.943 0.932 0.923 162 30

Y
el

lo
w

 p
ea

ch

September 

Sun
FF 5 1.187 1.237 0.459 0.383 0.208 162 30

4 zNumber of principal components; yroot mean square error (RMSE) of the model; xRMSE of the cross-

5 validation; wcoefficient of determination (R2) of the model; vR2 of the cross-validation; uR2 of the validation 

6 test; ttrain-sample size and stest-sample size.
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Figure 1. Fruit weight (FW, A), soluble solids concentration (SSC, B), flesh firmness (FF, C) 

and dry matter concentration (DMC, D) in fourteen stone fruit cultivars at harvest 

time (± 5 days). Boxplots display interquartile range boxes (1st to 3rd quartile), with 

horizontal median lines, highest and lowest observations (whiskers) and outliers 

(dots). Cultivar name abbreviations: 'Golden May' (GM), 'Angeleno' (AN), 'August 

Bright' (AGB), 'Autumn Bright' (ATB), 'Rose Bright' (RB), 'September Bright' 

(SB), 'Ice Princess' (IP), 'Snow Fall' (SF), 'Snow Flame 23' (FL23), 'Snow Flame 

25' (FL25), 'August Flame' (AF), 'O’Henry' (OH), 'Redhaven' (RH) and 'September 

Sun' (SS).
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Figure 2. Coefficients of determination (R2) and root mean square errors (RMSE) of partial 

least square regression models for the prediction of soluble solids concentration 

(SSC) with 1–10 principal components in the peach 'O’Henry'. Model and cross-

validation R2 and RMSE reported for the 729–975 nm absorbance (A and C) and 

for its second derivative (B and D). Grey dashed vertical lines show the number of 

principal components selected for SSC prediction.
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Figure 3. Scatter plots of model and cross-validation (CV) prediction fits against actual 

responses of soluble solids concentration (SSC). Dashed lines represent reference 

linear fits where SSC prediction = SSC actual response. Cultivar name 

abbreviations: 'Golden May' (GM), 'Angeleno' (AN), 'August Bright' (AGB), 

'Autumn Bright' (ATB), 'Rose Bright' (RB), 'September Bright' (SB), 'Ice 

Princess' (IP), 'Snow Fall' (SF), 'Snow Flame 23' (FL23), 'Snow Flame 25' 

(FL25), 'August Flame' (AF), 'O’Henry' (OH), 'Redhaven' (RH) and 'September 

Sun' (SS).
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Figure 4. Scatter plots of model and cross-validation (CV) prediction fits against actual 

responses of dry matter concentration (DMC). Dashed lines represent reference 

linear fits where DMC prediction = DMC actual response. Cultivar name 

abbreviations: 'Golden May' (GM), 'Angeleno' (AN), 'August Bright' (AGB), 

'Autumn Bright' (ATB), 'Rose Bright' (RB), 'September Bright' (SB), 'Ice 

Princess' (IP), 'Snow Fall' (SF), 'Snow Flame 23' (FL23), 'Snow Flame 25' 

(FL25), 'August Flame' (AF), 'O’Henry' (OH), 'Redhaven' (RH) and 'September 

Sun' (SS).
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Figure 5. Scatter plots of model and cross-validation (CV) prediction fits against actual 

responses of flesh firmness (FF). Dashed lines represent reference linear fits 

where FF prediction = FF actual response. Cultivar name abbreviations: 'Golden 

May' (GM), 'Angeleno' (AN), 'August Bright' (AGB), 'Autumn Bright' (ATB), 

'Rose Bright' (RB), 'September Bright' (SB), 'Ice Princess' (IP), 'Snow Fall' (SF), 

'Snow Flame 23' (FL23), 'Snow Flame 25' (FL25), 'August Flame' (AF), 

'O’Henry' (OH), 'Redhaven' (RH) and 'September Sun' (SS).
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