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Abstract: Soluble solids concentration (SSC) is a reference index that is typically used to quantify
soluble sugars, the most abundant constituents of stone fruit flesh dry matter when approaching
maturity. Dry matter concentration (DMC) is another parameter that has been often associated with
fruit quality. This study investigated the relationship of SSC and DMC in fourteen stone fruit cultivars
at harvest. SSC and DMC were measured at physiological maturity in peach, nectarine, plum and
apricot. SSC and DMC data had similar symmetrical patterns (range, means and variability) for most
of the cultivars. Mean SSC ranged between 11.6 and 19.7 ◦Brix, and DMC between 11.6% and 19.4%
w/w across all fruit studied. High variability in SSC was observed in apricot, with an interquartile
range = 5.7 ◦Brix. A generic linear regression model that included peach, nectarine and plum cultivars
revealed a robust association between DMC and SSC (p < 0.001, R2 = 0.914, n = 2800) with a DMC
prediction error (RMSE) equal to 0.874% w/w. However, when a simplified DMC = SSC was used
for DMC estimation, the RMSE only slightly increased and was still lower than 1.00% w/w. Similar
results were observed when linear regression models were assessed in each cultivar independently,
with R2 > 0.75 and RMSE generated by the simplified DMC = SSC model lower than 1.00% w/w in
thirteen out of fourteen stone fruit cultivars, with the exception of the apricot cultivar. These results
provide empirical evidence that SSC and DMC are highly correlated fruit quality indicators in plum,
peach and nectarine at harvest.
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1. Introduction

Stone fruit of the genus Prunus are among the most economically important crops in
temperate regions. Distinguishing fruit quality is important to inform orchard management
strategies, maximise production outcomes and meet consumer satisfaction. Stone fruit
sweetness is a key driver of consumer preferences [1–3] and is usually measured on ex-
tracted juice using a calibrated refractometer and expressed as soluble solids concentration
(SSC) in units of ◦Brix, where 1 ◦Brix = 1 g sucrose equivalents per 100 g solution. Fruit
internal composition at harvest is affected by several biochemical changes that are in turn
influenced by ripening stage, orchard management, and by genetic and environmental
factors. Fruit maturation impacts quality, storage and handling requirements. Some of
the fruit constituents that mutate across maturation have been extensively used as quality
parameters and maturity indices to better manage harvest, storage and shelf-life in tree fruit
crops. In stone fruit, SSC increases during maturation [2,4] and represents one of the most
characteristic fruit biochemical changes that occur prior to harvest. Various environmental
and physiological factors drive the within-tree variability in fruit SSC [5,6]. During posthar-
vest storage, peach total sugar content remains relatively stable, although individual sugars
(e.g., sucrose, sorbitol, glucose and fructose) may decrease or increase based on storage
conditions and cultivar [2,7]. Borsani et al. [7] observed that sorbitol is consumed early in
the ripening process, followed by partial sucrose degradation accompanied by fructose and
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glucose increases. SSC is one of the most used fruit maturity indices in nectarine, peach,
apricot and plum [8].

Fruit dry matter concentration (DMC) is commonly used as an indicator of maturity
and quality among fruit crops such as mango [9], avocado [10], kiwifruit [11], apple [12,13]
and pear [14] but has not been traditionally used in the stone fruit industry. Dry matter in
fruit flesh consists of all biochemical components other than water, and DMC simply repre-
sents dry mass as a percentage of fresh mass. Fruit DMC mainly accounts for soluble sugars,
starch, lignin, cellulose, fibre, fats, proteins, organic acids, minerals, vitamins, secondary
metabolites (e.g., carotenoids and phenolic compounds), and other minor constituents,
although relative quantities will vary among crops. Nectarine DMC remains stable in the
four weeks prior to harvest if trees are fully irrigated, whereas if deficit irrigation occurs,
fruit DMC increases as water content is reduced [15].

Typically, in stone fruit cultivars at harvest, water represents approximately 80–90% w/w
of unpeeled, pitted stone fruit fresh mass [16–18], and slightly more in peeled fruit [19], as
skin holds less moisture than flesh. Most of the remaining dry matter (i.e., 10–20% w/w) is
composed of soluble sugars (e.g., fructose, glucose, sucrose, sorbitol) and more complex
soluble and insoluble polysaccharides such as cellulose and lignin [2,17,20]. Starch is not
found in mature stone fruit, while protein, fat and ash make up less than two percent of
total fruit mass [16,17]. The type of organic acids vary among stone fruit cultivars but they
are mostly present in the form of malic, citric, quinic and oxalic acid that account for 0.1 to
2.7% of fresh mass, with lowest total acidity found in white peaches and nectarines [4,16,21].
On average, the total of sucrose, glucose and fructose accounts for approximately 7%, 8%,
6% and 7% of fresh mass in apricot, nectarine, peach and plum cultivars, respectively [16].
Sorbitol is present in lower concentrations in fully ripe stone fruit [4,22].

Given that soluble sugars are the main constituent of dry matter in ripe peach, nec-
tarine, plum and apricot, questions arise about the relationship between SSC and DMC
when measured at harvest, as measuring the two indices is time-consuming and poten-
tially redundant if they are tightly associated. In addition, although SSC and DMC values
represent concentrations obtained with different measurement techniques, their values at
harvest are conveniently in the same scale—typically in the 5–25 ◦Brix or % w/w range,
respectively (personal observations). This study investigated the association between SSC
and DMC in fourteen stone fruit cultivars at harvest and assessed whether these two
parameters provide similar information for fruit quality monitoring. Furthermore, the
study aimed to explore the potential of using DMC and SSC interchangeably, regardless of
measurement technique, for practical measurement purposes.

2. Materials and Methods

The study was conducted at the Tatura SmartFarm, Agriculture Victoria, Tatura,
Australia (36◦26′7” S and 145◦16′8” E, 113 m a.s.l.). Fruits of four yellow nectarines (Prunus
persica L. Batsch: ‘August Bright’, ‘Autumn Bright’, ‘Rose Bright’ and ‘September Bright’),
four yellow peaches (P. persica L. Batsch: ‘August Flame’, ‘O’Henry’, ‘Redhaven’ and
‘September Sun’), four white peaches (P. persica L. Batsch: ‘Ice Princess’, ‘Snow Fall’, ‘Snow
Flame 23’ and ‘Snow Flame 25’), one apricot (P. armeniaca L.: ‘Golden May’) and one
dark-purple Japanese plum (P. salicina L.: ‘Angeleno’) were harvested in summer 2019/20
from a stone fruit experimental orchard. For each cultivar, samples were composed of
200 fruit that included specimens with various sizes and colours to maximise the range of
SSC and DMC values within each sample. Fruit were handpicked in the early morning
and transferred to the laboratory at ambient temperature for determination of size, SSC
and DMC.

Fruit equatorial diameter (FD) was measured with a digital calliper from cheek to
cheek, avoiding fruit suture, and it was used as a reference of fruit size. At harvest, SSC is
constant along the FD of peach fruit [23]. Subsequently, fruit skin was removed from an
area of about 7–8 cm2—on one cheek along the FD—using a peeler and 2 to 3 drops of juice
per fruit were extracted onto a digital refractometer (PR-1; ATAGO CO., LTD., Saitama,
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Japan) for SSC (◦Brix) determination. Next, a corer was used to excise a portion of the pulp
(Ø ≈ 30 mm, h ≈ 15 mm) from the same area where juice was extracted. Flesh portions
were immediately weighed to determine fresh mass, placed in silicone trays and dried
in an oven at a constant temperature of 55 ◦C for 72–96 h to obtain dry mass. DMC was
calculated as the ratio of dry to fresh mass and expressed as percentage.

Analysis of variance followed by Tukey’s pairwise comparison was carried out to
compare FD among cultivars and means and standard deviations (SD) were shown. SSC
and DMC were presented in interquartile range (IQR) box plots with whiskers for each
cultivar. Student’s t-tests and Levene’s tests were used to test whether differences between
SSC and DMC means were significant and to test the equality of their variances, respectively.
Linear regression analyses were conducted to determine the relationship between SSC
and DMC in the generic stone fruit population and in each cultivar individually and the
models’ goodness of fit was assessed using the coefficient of determination (R2)—i.e.,
robust associations between DMC and SSC for R2 > 0.75. Comparisons between best-fit
regression models and a simple reference model where DMC = SSC (intercept = 0 and
slope = 1) were carried out as the two models’ linear fits appeared graphically similar and
their values had similar range scales (i.e., 5–25 ◦ Brix or % w/w). Analysis of variance
(ANOVA) was carried out to test significant differences between intercepts and slopes in
the two models. Root mean square errors (RMSE) were calculated to quantify the practical
errors for the prediction of DMC using the best-fit and the reference DMC = SSC models,
with errors considered acceptable for RMSE < 1.00. The difference between the RMSE of
best-fit models and RMSE of the DMC = SSC model (∆RMSE) was calculated to identify the
surplus error derived from simplifying the prediction of DMC by using a more practical
DMC = SSC instead of the best-fit model. Data were analysed using Minitab® Statistical
Software (Minitab, LL v.19, State College, PA, USA) and graphs were generated with
SigmaPlot 12.5 (Systat software Inc., Chicago, IL, USA).

3. Results

In the cultivars under study commercial maturity occurred between December 2019
and March 2020. The apricot ‘Golden May’ was the first to reach maturity at the beginning
of December, followed by the nectarine ‘Rose Bright and the white peach ‘Snow Flame 23’.
The two white peaches ‘Snow Flame 25’ and ‘Ice Princess’ and the yellow peach ‘Redhaven’
were harvested in January, whilst the nectarines ‘Autumn Bright’ and ‘August Bright’ and
the yellow peaches ‘August Flame’ and ‘O’Henry’ were harvested in February. The late nec-
tarine and peach ‘September Bright’, ‘September Sun’ and ‘Snow Fall’, and the ‘Angeleno’
plum were harvested in March, with the latter being the last cultivar to reach maturity.

Overall, FD means ranged from approximately 40 to 70 mm among all cultivars under
study (Figure 1). ‘Golden May’ apricots were significantly the smallest fruit when compared
to all the other cultivars (FD = 40± 4 mm) followed by ‘Angeleno’ plums (FD = 49 ± 3 mm).
‘September Sun’ trees yielded fruit significantly larger than others (FD = 70 ± 7 mm), fol-
lowed by ‘Snow Fall’ (FD = 66 ± 8 mm) and ‘O’Henry’ (FD = 65 ± 4 mm). Notably, fruits
in the ‘Angeleno’ plum sample were very uniform in size, resulting in the lowest variability
(SD = 3 mm) among cultivars.

Boxplots of SSC and DMC at harvest highlighted visibly similar data distributions
for these two parameters within each cultivar (Figure 2). In each cultivar, both SSC and
DMC were normally distributed although their means varied among cultivars as did their
variability. Distributions of SSC and DMC within cultivars appeared similar (Figure 2)
despite the use of different measurement techniques, respectively. On the one hand,
‘Angeleno’ plums and ‘Redhaven’ peaches expressed low variability for both SSC and
DMC (Figure 2). On the other hand, ‘Golden May’ apricots expressed distinctively high
SSC variability, leading to a wider IQR (5.7 ◦Brix) compared to DMC (3.6% w/w) (Figure 2).
Furthermore, in ‘September Sun’ and ‘Snow Fall’ peaches, the DMC IQR box was slightly
shifted to the right, resulting in a higher mean DMC values (13.8% w/w for ‘September
Sun’ and 18.3% w/w for ‘Snow Fall’) compared to SSC (13.2 ◦Brix for ‘September Sun’
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and 17.5 ◦Brix for ‘Snow Fall’) (Figure 2). The comparison between mean SSC and DMC
(t-test) and between their variances (Levene’s test) within each cultivar confirmed previous
observations. The mean values of SSC and DMC were not significantly different (p > 0.05)
in all the cultivars except for ‘September Sun’ and ‘Snow Fall’ (Figure 2). When SSC and
DMC variances were compared, significant differences were only found in the ‘Golden
May’ apricot (Figure 2), suggesting that high variability in sugars (i.e., IQR = 5.7 ◦Brix) is a
characteristic of this cultivar that is not reflected by DMC.
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Figure 1. Fruit equatorial diameter (FD) in fourteen stone fruit cultivars at harvest (n = 200). Different letters represent
significant differences determined with analysis of variance followed by Tukey’s pairwise comparison (p < 0.05).

The linear regression analysis between DMC and SSC in the generic stone fruit popu-
lation revealed a robust direct relationship between them—the best-fit model generated
a R2 = 0.931 and a RMSE = 0.874 (Figure 3). The model reported in Figure 3 relied on a
large sample size of 2800 fruit, with a SSC range of 4.7 to 23.3 ◦Brix and a similar DMC
range (7.1–23.9% w/w). When the intercept and slope of the best-fit model were compared
to the intercept and slope of the reference DMC = SSC (i.e., 0 and 1, respectively), both
comparisons generated significant differences (p < 0.001). However, the RMSE obtained
with the DMC = SSC model was only slightly higher (0.916) than the one generated by the
best-fit model (Figure 3)—i.e., ∆RMSE = 0.042. Figure 3 suggests that individual cultivars
may produce some noise in the DMC-SSC relationship (e.g., DMC in ‘Golden May’ apricots
appears more dispersed at SSC <12.5 ◦Brix).

Within-cultivar linear regression models confirmed the tight relationship between
DMC and SSC (Figure 4 and Table 1). Except for ‘Golden May’, all the linear regression
models expressed highly significant linear associations between SSC and DMC (p < 0.001,
R2 > 0.75), although the slopes and intercepts of the models were slightly different among
the cultivars (i.e., range for intercept of−0.49 to 3.04, range for slope = 0.81 to 1.03) (Table 1).
In ‘Golden May’ the linear regression model generated a lower R2 (0.699) and intercept
and slope equal to 5.72 ± 0.32 and 0.55 ± 0.03, respectively (Table 1).
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Linear regression best-fits for ‘Autumn Bright’, ‘September Bright’ and ‘Angeleno’
followed an almost identical trend to the reference regression fit of the DMC = SSC model
(Figure 4). Indeed, when best-fit intercepts and slopes were compared to 0 and 1 (i.e.,
DMC = SSC), the ANOVAs highlighted no significant differences in these three cultivars
(p ≥ 0.05) (Table 1). In the other cultivars, slopes and intercepts were found to be signifi-
cantly different between the best-fit and the DMC = SSC model (p < 0.05) with an exception
for ‘Snow Fall’, where slope was not significantly different from 1, despite an intercept
significantly higher than 0 (Table 1). The RMSE for the best-fit models was lower than
1.00 in all the cultivars under study, with again the exclusion of ‘Golden May’, whose
RMSE was 1.328 (Table 1). When the DMC = SSC model was used to estimate DMC, the
RMSE slightly increased in all the cultivars that had RMSE < 1.00 for the best-fit model but
still did not reach the threshold of RMSE = 1.00 (Table 1). In ‘Golden May’, the DMC = SSC
model had a RMSE 1.62-fold higher than the one obtained for the best-fit model and overall,
higher than 2.00 (Table 1). The surplus error (∆RMSE) derived from predicting DMC using
the DMC = SSC model instead of the best-fit was < 0.40 in all the cultivars except for
‘Golden May’, in which ∆RMSE was more than double than in ‘Snow Fall’, the cultivar with
the second highest ∆RMSE (Table 1).
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Table 1. Linear regression models for dry matter concentration (DMC) against soluble solids concentration (SSC) in fourteen stone fruit cultivars (n = 200) at harvest. Slope and intercept
with relative standard errors (SE) and linear regression coefficient of determination (R2) reported. Analysis of variance (ANOVA) p-values reported for the comparison of slopes and
intercepts between the best-fit models and a reference DMC = SSC model with slope = 1 and intercept = 0. Underlined values for R2 < 0.75, RMSE > 1.00 or p-values > 0.05. Root mean
square errors (RMSE) for the best-fit and for the DMC = SSC models, and their difference (∆RMSE) reported.

Crop Cultivar
Best-Fit Linear Regression Coefficients

R2 ANOVA RMSE for Best-Fit
Model

RMSE for
DMC = SSC Model

∆RMSE
Intercept Intercept SE Slope Slope SE Intercept (p) Slope (p)

Nectarine

‘August Bright’ 1.92 0.31 0.87 0.02 0.899 <0.05 <0.05 0.747 0.829 0.082
‘Autumn Bright’ 0.19 0.18 0.99 0.02 0.952 0.305 0.527 0.377 0.385 0.008

‘Rose Bright’ 2.09 0.29 0.85 0.02 0.888 <0.05 <0.05 0.710 0.798 0.088
‘September Bright’ 0.25 1.03 0.02 0.952 0.050 0.061 0.502 0.507 0.005

Yellow
peach

‘August Flame’ 2.25 0.31 0.81 0.02 0.862 <0.05 <0.05 0.726 0.918 0.192
‘O’Henry’ 2.58 0.35 0.82 0.02 0.868 <0.05 <0.05 0.748 0.854 0.106

‘Redhaven’ 1.25 0.39 0.88 0.03 0.778 <0.05 <0.05 0.621 0.657 0.036
‘September Sun’ 1.18 0.25 0.95 0.02 0.933 <0.05 <0.05 0.567 0.818 0.251

White peach

‘Ice Princess’ 1.28 0.29 0.91 0.02 0.900 <0.05 <0.05 0.746 0.782 0.036
‘Snow Fall’ 1.16 0.43 0.98 0.02 0.894 <0.05 0.351 0.642 0.998 0.356

‘Snow Flame 23’ 1.93 0.31 0.88 0.02 0.900 <0.05 <0.05 0.684 0.752 0.068
‘Snow Flame 25’ 3.04 0.41 0.81 0.03 0.835 <0.05 <0.05 0.638 0.720 0.082

Apricot ‘Golden May’ 5.72 0.32 0.55 0.03 0.699 <0.05 <0.05 1.328 2.144 0.816

Plum ‘Angeleno’ 0.46 0.40 0.96 0.02 0.918 0.254 0.074 0.388 0.470 0.082
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4. Discussion

Fruit water and dry matter content are inversely related as together they represent
the total constituents of fresh mass. The relationship between water and soluble sugar in
stone fruit is well known [24,25] and is influenced by dilution/concentration mechanisms
occurring in flesh cells. Management strategies such as deficit irrigation have previously
been used to maximise SSC of stone fruit at harvest, as water stress induces an increase
in the concentration of soluble sugars associated with a reduction in fruit size [3,15]. The
significant and positive correlation between SSC and DMC highlighted in linear regression
models (Figures 3 and 4 and Table 1) was expected, in line with previous findings on
apple [26–28] and apricot [29]. The intercept value (% w/w) obtained in the linear regression
models can be attributed to the percentage of fresh mass composed of insoluble solids.
Insoluble solids accounted for less than 3.1% in peach, nectarine and plum cultivars, but
was higher than 5.0% in ‘Golden May’ apricots (Table 1).

The generic best-fit model (Figure 3) generated a RMSE of 0.874, suggesting that DMC
at harvest can be estimated from SSC data, and vice versa, with a relatively low error.
Furthermore, even assuming a simplified model where DMC = SSC, the prediction error is
subjected to a minimal increase (∆RMSE = 0.042). However, Figures 2 and 3 suggest that
the DMC vs. SSC relationship may differ among cultivars. Similar distributions of SSC
and DMC were observed in most of the cultivars (Figure 2). Minor differences of SSC and
DMC means were only found in the ‘September Sun’ yellow peach and in the ‘Snow Fall’
white peach (Figure 2). These two peach cultivars were characterised by the largest FD
(Figure 1), indicating that there may be a tendency to have a larger DMC/SSC ratio in large
fruit, possibly determined by different cell size and number and/or higher concentration of
structural carbohydrates and fibre. Nevertheless, even in these two cultivars the difference
between SSC and DMC means was relatively small (<0.80). The ‘Golden May’ apricot was
instead characterised by a significantly different variability of SSC and DMC (Figure 1)
that generated a large IQR in SSC (Figure 2). This suggests that ‘Golden May’ apricots
could not be considered as part of the same pooled generic stone fruit population. The
high variability of SSC observed in ‘Golden May’ was in line with what observed in
other apricot genotypes by Socquet-Juglard et al. [30] and was likely influenced by the
nonuniform change in the concentration of dietary fibre and acids in the flesh. The sum
of acid and fibre concentration tends to be higher in apricot than in nectarines, peach and
plum [16]. This also may explain the slope and intercept characteristics of the ‘Golden May’
linear regression equation (Table 1), where DMC = SSC at SSC = 12.5 ◦Brix, DMC > SSC at
SSC < 12.5 ◦Brix and DMC < SSC at SSC > 12.5 ◦Brix (Figure 4). Thus, at low SSC, DMC is
very likely to be characterised by higher acid and fibre content, whereas at high SSC these
constituents tend to be reduced.

Linear regression best-fits were not significantly different from DMC = SSC fits in
‘Autumn Bright’, ‘September Bright’ and ‘Angeleno’, suggesting that DMC and SSC can be
interchangeable in these cultivars (Figure 4, Table 1). Therefore, at harvest, in these three
cultivars fruit DMC is statistically and practically equivalent to SSC and its values can
be estimated using data from SSC with a low error regardless of the model applied (i.e.,
RMSE ≤ 0.51% w/w, Table 1).

Except ‘Golden May’, replacing the best-fit model with a simplified DMC = SSC
model produces small increments of the prediction error (max ∆RMSE = 0.356) in all the
cultivars under study (Table 1). The association between DMC and SSC is not statistically
equivalent to a simplified DMC = SSC model in all the cultivars, as significant differences
in slope and intercept coefficients are often found (Table 1). However, the adoption of the
simplified DMC = SSC model generates errors for the DMC prediction lower than 1.00%
w/w in thirteen out of fourteen stone fruit cultivars (Table 1). From a practical point of
view, errors under 1.00% w/w are acceptable for fruit quality determinations, especially for
commercial purposes.

From a precision horticulture perspective, it is important to verify the DMC-SSC
relationship for nondestructive SSC and DMC measurements, such as those using near
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infrared spectroscopy [31,32]. In fact, robust models may be obtained for both parameters
as a result of their interdependency. Consumers prefer stone fruit with SSC greater than
11–12 ◦Brix [11,33,34]; however, high SSC variability within and between cultivars (e.g.,
Figure 2) is a recurrent problem in the Australian stone fruit industry [5]. Fortunately,
‘smart’ technology (e.g., digital Bluetooth callipers, DA meter, Vis/NIR spectroscopy,
colour sensors) can be used to improve orchard management, crop monitoring and harvest
protocols, and offers growers the ability to produce high quality fruit that meet consumer
expectations [35–37].

This study highlighted the strong association between two important fruit quality
parameters—SSC and DMC—in Japanese plum, nectarine and peach cultivars at com-
mercial maturity. We caution against the use of DMC and SSC in these crops as separate
fruit quality indices at harvest, as their values are very similar, regardless of different mea-
surement techniques. However, in the case of ‘Golden May’ apricots, although SSC and
DMC were linearly related, their relationship was less robust than in other cultivars, and
generating DMC predictions based on SSC data produced errors > 1%. SSC and DMC show
similar values regardless of measurement techniques at harvest, although they represent
concentrations of soluble solids on a liquid matrix (juice) and dry matter on a solid matrix
(pulp portion), respectively. This is likely due to the low percentage of insoluble solids
in fruit fresh mass (i.e., intercept value of the linear regression models) in most of the
cultivars. In modern cultivars with high SSC, soluble sugars at harvest represent most of
the remaining dry matter in the fruit pulp, justifying why percentages of soluble solids
and dry matter are often practically identical. Further work is required to determine how
the DMC and SSC are related at different stone fruit maturity stages and to determine if
comparable fruit quality relationships exist in other fruits.
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